

测序文库构建试剂盒操作指南

一、产品信息

PK201 适用于 LentiCRISPRv2 为骨架载体的文库 sgRNA 扩增,PK202 适用于 LentiGuidePuro 为骨架载体的文库 sgRNA 扩增,其它载体骨架需咨询客服。

二、产品组分

试剂盒分为 A/B 两个规格,随机发货(图 1),内含组分依次为 Nuclease-free H₂O、Magic[™] PCR Master Mix (2×)、 Magic[™] Primer Mix、 Positive Control A (Plasmid)、 Positive Control B (Genomic DNA)(图 2)。

图 1. 试剂盒外包装

图 2. 试剂盒组分

三、实验前准备

实验前各组分试剂请于冰上融化(表 1),将融化后的 Magic[™] PCR Master Mix(2×)震荡混匀并瞬时离心,避免内部组分不均一导致实验误差。实验对象(基因组 DNA/质粒 DNA)与相对应 Magic[™] Primer Mix 做好标记。另外,使用此试剂盒需自备常见实验耗材(表 2)。

产品组成	PK201A	PK201B
	(200 Preps)	(200 Preps)
Nuclease-free H ₂ O	5 mL	5 mL
Magic TM PCR Master Mix (2×)	5 mL	5 mL
Magic TM Primer Mix#V1-V6 (10 μM)	各 80 µL×2	-
Magic TM Primer Mix#V7-V12 (10 μM)	-	各 80 µL×2
Positive Control A (Plasmid)	10 μL	10 μL
Positive Control B (Genomic DNA)	100 μL	100 μL

表 1. 试剂盒产品组成

推荐使用**研美生物基因组提取试剂盒(GK101,肿瘤组织;GK102,细胞)**进行基因组高质量提取。将提取出的基因组 DNA 样品稀释 20 倍(19 μ L Nuclease-free H₂O+1 μ L 基因组 DNA)并使用 Qubit dsDNA HS Assay Kit 测试基因组 DNA 浓度。若使用 Nanodrop 等基于分光光度法进行浓度测定,一般真实基因组 DNA 浓度约为 Qubit 测得浓度的一半。

试剂及耗材推荐Qubit dsDNA HS Assay KitVazyme, Cat.No. EQ121DNA 胶回收试剂盒Tiangen, Cat.No. DP214

表 2.自备试剂耗材

四、实验设计

1、文库质粒质控 NGS 测序文库构建

无论文库 sgRNA 数量多少,文库质粒构建 NGS 测序库建议设置 4 个 50 μL PCR 反应体系,建 议每个 PCR 反应体系(50 μL)添加量为 100 ng(Qubit)或 200 ng(Nanodrop)。

2、文库基因组 DNA NGS 测序文库构建

CRISPR 筛选文库细胞的需求量最佳实践为文库 sgRNA 数量的 500 倍,500 一般称之为为文库的覆盖乘数。理论上 1.0*106 细胞提取出基因组 DNA 为 $6.6~\mu g$ 数。推荐每个 PCR 反应体系($50~\mu L$)添加量为 $1~\mu g$ (Qubit)或 $2~\mu g$ (Nanodrop)为了方便您的计算,我们列出不同 sgRNA 数应进行 PCR 的模板 μg 数(表 3)。

应进行PCR模板量(
$$\mu$$
g) = $\frac{\text{sgRNA数} \pm \times 500}{10^6}$ (覆盖乘数) $\times 6.6$

文库 sgRNA 数(500×)	PCR 模板量(Qubit, μg)	PCR 模板量(Nanodrop, μg)
5000	16.5	33.0
10000	33.0	66.0
20000	66.0	132.0
60000	198.0	396.0

表 3.不同 sgRNA 数进行 PCR 模板量

在实际实验中因细胞数量有限可能基因组 DNA 得率偏低,可根据具体提取基因组的μg 数或实验要求适量减少文库的覆盖乘数,将其降为 300×或 200×,但最终仍需符合您的实验要求。

以 Sample 文库为例, 假设该文库 sgRNA 数为 6523 条, 故该样本应进行 PCR 模板量为:

Sample =
$$\frac{6523 \times 500 \times 6.6 \ \mu g}{10^6}$$
 = 21.5 μg

以 50 μ L 为一个 PCR 反应体系,则应 PCR 22 管(为保证文库的均一性和覆盖度,实际 PCR μ g 数 \geqslant 计算模板量)。假设 Sample 提取基因组 DNA 总量为 12.6 μ g,此时我们可以取全部的基因组 DNA 进行 PCR(注意:取全部的基因组 DNA 进行 PCR 时首先需要进行预实验,以防实验失败基因组全部损失),即 PCR 管数为 13 管(覆盖乘数为 290×)。在实验中还要注意,不同的样品对应使用不同编号的 MagicTM Primer Mix,以避免后续测序时样品之间无法混样测序。

将 PCR 反应液配置在一个 1.5 mL/2.0 mL 离心管中,震荡混匀离心后每 50 μL 分装至相应 PCR 管中进行后续 PCR。PCR 结束后,将 PCR 反应液收集到一个新的 1.5 mL/2.0 mL 离心管中并混匀(图 3)。

配置 PCR 反应液时各组分添加量如下:

组分	实际情况		理想情况	
Nuclease-free H ₂ O	补至 650 μL		补至 1100 μL	ace Ho
MagicTM PCR Master Mix (2×)	325 μL	13 个反应	550 μL	22 个反应
Magic Primer Mix#V1	52 μL		88 μL	
Genomic DNA	12.6 µg		21.5 μg	

PCR 反应程序:

步骤	温度	时间	循环数
预变性	95°C	3 min	1
变性	95°C	15 s	
退火	58°C	15 s	25
延伸	72°C	30 s	The B
补延伸	72°C	5 min	hin 1 Sole

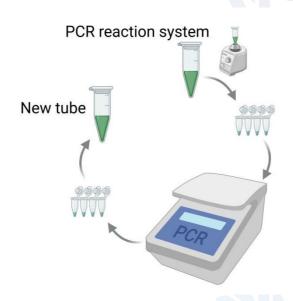


图 3. PCR 流程图

取不少于 100 μL 收集的 PCR 反应液进行琼脂糖(1.5%)凝胶电泳。结果见图 4。目的条带大小约 300 bp, 跑胶后肉眼观测到的条带大小在 250 bp 附近(略大于 250 bp)。注意每次电泳应该更换新的电泳缓冲液,并使用一次性切胶器,避免样品之间或其他杂质污染,影响后续回收、测序等实验。

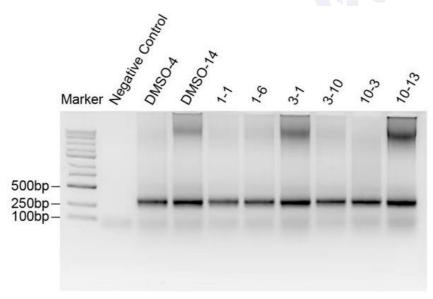


图 4. 构建 NGS 测序库琼脂糖凝胶电泳图

使用 DNA 胶回收试剂盒将切除胶块回收,推荐使用 Qubit dsDNA HS Assay Kit 检测各样本切胶 回收后产物的浓度,将产物进行 Illumina 测序,各样本请根据 CRISPR 文库包含的 sgRNA 数量计算 测序深度,每 1000 条 sgRNA 测 0.17G,可覆盖每条 sgRNA 500×。

常见问题:

1、正式实验前是否需要进行预实验?

对于**未进行 Day0 样本测试**的新制备文库细胞而言或者**初次进行 CRISPR 筛选测序**,建议进行预实验,可以每个样本进行 1-3 个 50 μ L PCR 反应,分别加入 1 μ g、2 μ g 和 5 μ g 基因组 DNA 测试样本扩增产量,同时设置阳性基因组对照(1 μ g)。

2、sgRNA 数量很多的全库应如何设置实验?

可通过**适当降低覆盖乘数**和**增加每个反应的基因组量**来缩小反应数。以 60000 sg 全库为例,按照 $300 \times$ 设置实验每组可收获 1800 w 细胞,理论上可以获得 $118.8~\mu g$ 基因组 DNA。若每 $50~\mu L$ 反应体系加入 $2~\mu g$ 基因组 DNA 则需要 $60~\uparrow$ PCR 反应,若每 $50~\mu L$ 反应体系加入 $5~\mu g$ 基因组 DNA 则需要 $24~\uparrow$ PCR 反应。

3、加 1 μg 基因组 DNA 进行 25 个循环扩增较弱怎么办?

说明**基因组 DNA 中阳性分子数不足**即可能含有未被药杀彻底的野生型细胞。这种情况下覆盖乘数可能偏低,一般应增加基因组 DNA 模板的量至 2 μg 或 5 μg 增加覆盖乘数并增加目的条带产量。此外,也可以通过增加循环数至 28 个循环增加目的条带产量。无论是增加循环数还是增加基因组 DNA 的量**可能导致副反应增加**(杂带或背景扩增)。

